Introduction to Bayes Factors with mixed effects logistic regression

> Maša Vujović LiLaC Lab Meeting 1st November 2018

Some disclaimers

Work in progress at Language Learning Lab with input from Prof Zoltan Dienes

* Some published work used this method: see <u>http://languagelearninglab-ucl.com</u> tor preprints

 Not an introduction to Bayesian statistical modelling
Combining a Bayesian statistical inference method with mixed-effects logistic regression models
All mistakes today my own!

Bayes Factor is a measure of strength of evidence

Strength of evidence = amount by which your prior confidence in H1 over H0 ought to change having seen the data

Bayes Factor is a measure of strength of evidence

$$\mathsf{B} = \frac{P(D \mid H1)}{P(D \mid H0)}$$

- If B = about 1, experiment was not sensitive
- If B > 1 then the data supported your theory over the null
- If B < 1, then the data supported the null over your theory

Jeffreys (1961):

- B < 0.1 strong evidence for H0
- B < 0.33 substantial evidence for H0
- B > 10 strong evidence for H1
- B > 3 suggest substantial evidence for H1
- between 0.33 and 3 inconclusive evidence 01/11/2018

Why choose BF over p-values?

- Unlike frequentist hypothesis testing, can give support for the null
- Unlike p-values, BF are not sensitive to optional stopping (Rouder, 2014)
- Differences between Bayes Factors are meaningful easier to interpret than p-values
- For me personally, BF gets me to engage more with my effects of interest:
 - What is my prior belief?
 - Where does it come from?
 - What data would convince me otherwise?

Computing Bayes Factors

Needs two kinds of information:

- Model of the data (mean difference between conditions and the standard error) – observed values
- 2. Model of the H1 (your prediction)

There is an R function/Bf Calculator which does this for you!

Bayes Factor Calculator in R

- Bf R function equivalent to the Dienes (2008) calculator which can be found here: http://www.lifesci.sussex.ac.uk/home/Zoltan_D ienes/inference/Bayes.htm
- The code was provided by Baguely and Kayne (2010) and can be found here: http://www.academia.edu/427288/Review_of _Understanding_psychology_as_a_science_An _introduction_to_scientific_and_statistical_infer ence

BF with Mixed Models in R

	Estimate Std.	Error	z value	Pr(>lzl)
(Intercept)	0.479	0.095	5.043	0.000
affix.ct	0.033	0.188	0.177	0.860
type_frequency.ct	0.381	0.152	2.503	0.012
affix.ct:type_frequency.ct	-0.646	0.299	-2.159	0.031

BF with Mixed Models in R

sd – standard error from the LME [se] obtained – beta estimate from the LME [mean] sd theory – predicted effect size (here: beta estimate from a corresponding LME with pilot data) [h1]

mean of theory – 0 uniform – 0 (or 1 if using a uniform prior) tail – 1 or 2 depending on whether one- or two-tailed

A note on signs...

- Bf calculator does not allow negative H1
- One way of getting round this: multiply H1 and mean by -1:

Scenario	Multiply by -1	Result
h1 negative, observed value negative	-h1 * -1 = h1 -mean * -1 = mean	Both values same sign (as found)
h1 negative, observed value positive	-h1 * -1 = h1 mean * -1 = - mean	Values opposite sign (as found)

The question you've been dying to ask!

Where does the prior come from?

From the literature

From a pilot experiment

You come up with a plausible maximum effect

and more...

- One of my studies:
 - Language learning study participants are trained on an artificial language and then tested on what they learn
 - DV: accuracy at test
 - IV 1: affix two levels: whether participants are learning a suffixing or a prefixing language
 - IV 2: type frequency two levels: whether the words I test them on were high or low frequency in learning input

- I predict an affix-by-type-frequency interaction. Specifically:
 - Suffix condition should be above chance on both high and low type-frequency items
 - Prefix condition should be above chance on high, but chance-level on low type-frequency items
- What is the plausible maximum here?
 - All of the type frequency effect is carried by the prefix condition
 - Maximum corresponds to the main effect of type frequency

		PERCENT	LOG ODDS	LOGG_ODDS*2	
Prefix	HF	90	2.197		
Prefix	LF	50	0.000		
Suffix	HF	90	2.197		
Suffix	LF	90	2.197		
Affix		20	1.099	2.197	
Type_frequency		20	1.099	2.197	
Interaction		40	2.197	4.394	

a*b interaction = 2 * main effect of a or main effect of b (depending on theoretical interest)

- Let's say I am interested in a main effect of affix:
 - ➤I predict that the Suffix condition will be better than the Prefix condition
- What is the plausible maximum?
 - All learning happens in suffix condition, no learning happens in prefix condition
 - If so, main effect of affix corresponds to the intercept (*if intercept reflects overall learning rather than one baseline condition)

- In general, the maximum is 2 * "one level up":
 - main effect \rightarrow 2 * intercept
 - 2-way interaction → 2 * main effect OR 4 * intercept
 - And so on
- You could therefore use these values from previous data OR current data
 - Note: recommended you use independent data wherever possible to model your H1

References

- Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. *Frontiers in psychology*, *5*, 781.
- Jeffreys, H. (1961). *Theory of Probability*. London: Oxford University Press.
- Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. *Psychonomic Bulletin & Review*, 21(2), 301-308.